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ABSTRACT
A closure model for turbulent flows is developed based on a dynamical system theory. An appropriately discretized formulation of the gov-
erning equations is considered for this process. The key ingredient is an approximation of the system’s attractor, where all the trajectories
in phase space are confined. This approximate inertial manifold based approach provides a path to track trajectories of the system in a
lower-dimensional subspace. Unlike conventional coarse-graining approaches, the turbulent field is decomposed into resolved and unre-
solved dynamics using the properties of the governing equations. The novelty of the approach relies on the reconstruction of the unresolved
field constrained by the governing equations. A posteriori tests for homogeneous isotropic turbulence and the Kuramoto–Sivashinsky equa-
tion show promising results for considerable dimension reduction with strong convergence properties. The proposed model outperforms the
dynamic Smagorinsky model, and the computational overhead is competitive with similar approaches.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0097981

I. INTRODUCTION

Large eddy simulation (LES) has become the pre-eminent tool
for simulating complex turbulent flows.1–3 Although LES resolves
only the large scales, and small scales have to be explicitly modeled,
its ability to capture turbulent mixing has led to the increased pre-
dictive accuracy of reacting flows.4 However, the accuracy of LES is
still dependent on small-scale modeling, especially when the dom-
inant physics occurs at these scales.3,5,6 The effect of small scales is
treated using two general approaches: explicit and implicit formula-
tions. In implicit LES, the physics of the small scales is represented
by the numerical dissipation imposed by the spatial discretization
of the governing equations, assuming that the contribution of the
small scales is strictly dissipative.7,8 In explicit modeling of the small
scales contribution, spatial filters are applied to the governing equa-
tions to remove scales smaller than a prescribed value, introducing
additional subgrid-scale (SGS) stresses and fluxes to be modeled. In
this latter approach, the SGS contribution is modeled either indi-
rectly as an algebraic function of the filtered field properties, such
as eddy-viscosity models, or directly by the reconstruction of the

sub-filter field.9,10 The focus here is on the explicitly modeled LES
formulation.

Eddy-viscosity models represent SGS stress tensor and fluxes
in terms of the filtered field variables. In particular, the Smagorinsky
model11 assumes that the SGS stress tensor is proportional to the
filtered strain rate, and the proportionality factor, eddy viscosity,
depends on the filter width and a constant model parameter. Despite
its simplicity in implementation, in complex flows where multiple
flow regimes exist, the proportionality coefficient needs to be tuned
for each flow regime.12 To address this limitation, dynamic model-
ing approaches are introduced, which compute model parameters as
a function of time and space dynamically by assuming scale simi-
larity for resolved and subgrid scales.12–14 In this modeling ansatz,
the local equilibrium of turbulent kinetic energy plays a key role,
which implies a forward cascade of energy between resolved and
modeled scales. These models have been found to introduce errors
in near-wall and transitional regions.14,15

A different approach is to approximate the unfiltered field from
the information at the resolved scales without invoking the uni-
versality of the subgrid field. These models are developed mostly
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on the scale similarity premise, i.e., the contribution of the small
resolved scales to the large resolved scales is similar to the contri-
bution of the unresolved scales to the small resolved scales. Scale
similarity model (SSM)16,17 approximates the SGS stress tensor by
applying a second spatial filter like in the dynamic Smagorinsky
model. There, the proportionality constant is determined to repro-
duce the exact average SGS kinetic energy. SSM gives the correct
rate of energy flux to the subgrid scales and can predict backscat-
ter reasonably. A generalized form of the scale similarity model
with repeated filtering is the approximate deconvolution model
(ADM).9,10 In ADM, the unfiltered field is recovered by applying
the truncated series expansion of the inverse filter operator to the
filtered field; hence, nonlinear terms in the governing equation of the
resolved scales are computed directly. Unlike eddy viscosity mod-
els, SSM and ADM cannot predict adequate SGS dissipation, and an
additional relaxation regularization is required. Bardina et al. pro-
posed a mixed-model of scale-similarity and eddy-viscosity models
to account for the twofold SGS contribution: (1) energy transfer
from large scales and (2) dissipation of energy contained in the SGS.
This model has a superior performance in transitional flows.17 How-
ever, the ratio of each component of the SGS model needs to be
determined.

There exist other LES modeling approaches that do not rely on
traditional spatial filters for the separation of scales. Such models
use projection-based decomposition for scale separation. For
instance, variational multi-scale LES18,19 uses a variational projec-
tion to decompose the range of scales in groups of large resolved
scales, small resolved scales, and unresolved scales. In this approach,
the direct contribution of the SGS physics is confined to the small
resolved scales, and large resolved scales are solved directly (i.e.,
without any modeling) but influenced indirectly by the subgrid-scale
model due to the inherent coupling of all scales.18,20 Projection-
based scale separation provides a theoretical framework for model
reduction that is largely used in dynamical systems. For instance,
this approach has been successful in weather prediction.21 A fluid
system described by a set of partial differential equations (PDEs)
governing nv variables can be treated as a finite-dimensional dynam-
ical system after appropriate spatial discretization using ng grid
points. In this setting, the dynamics of the system reside in an
N-dimensional state-space defined by nv × ng degrees of freedom.
The spatial and temporal evolution of the turbulent flow can then
be expressed as a trajectory in this state-space. In many systems
dominated by coherent structures, the long-time behavior of the
system is known to be confined to a low-dimensional subspace of
the full N-dimensional state-space. All trajectories of the system are
attracted to this low-dimensional subset, which contains the attrac-
tor of the system.22–24 Constantin et al.23 showed that the dimension
of the attractor scales nonlinearly with the Reynolds number of the
flow. Direct estimations of this attractor dimension for turbulent
flows using the Kaplan–Yorke conjecture25 showed that attractor
dimensions are orders of magnitude lower than the number of
degrees of freedom required by DNS.26,27

In certain dissipative dynamical systems, an invariant subset of
the state-space attracts all trajectories of the system exponentially.
The long-time dynamical behavior of the system can be studied
in this low-dimensional subspace, known as the inertial mani-
fold (IM).24 These manifolds, when they exist, contain the global
attractor of the system. The dynamics of the inertial manifold can

be described by a finite-dimensional system of ordinary differen-
tial equations (ODE), called the inertial form, which completely
describes the long-time dynamical behavior of the original infinite-
dimensional system. Current theorems can prove the existence of
an inertial manifold for certain dissipative systems.24,28–30 How-
ever, these theorems cannot explicitly determine the topology of
the inertial manifold, and they can only provide an upper bound
for its dimension. Inertial manifold theories require strong restric-
tions, which are not satisfied in practical systems governed by the
Navier–Stokes equations.24,28 Consequently, an approximation of
the inertial manifold (AIM) is necessary to describe the system
in its inertial form. AIM can approximate either the true inertial
manifold29,31,32 or a neighborhood of the global attractor of the
system when the existence of the IM is unknown.33–37 The main
assumption is that the dynamics in the complement space, between
the AIM and the full state-space, equilibrate to the dynamics on the
AIM. In other words, the motion in the complement space responds
instantaneously to changes in the trajectory on the AIM. While this
assumption is justified by the theoretical studies discussed above,
its validity needs to be scrutinized more rigorously for different
systems.

Recently, the use of AIM for turbulence simulations has been
pursued.37,38 In one study,37 a priori analyses of the AIM formulation
for the one-dimensional Kuramato–Sivashinsky equation (KSE) and
the three-dimensional Navier–Stokes equations were carried out. It
was demonstrated that the AIM approach provides a viable path-
way for modeling the unresolved scales. In a related study,38 the
AIM approach was used to model non-premixed turbulent com-
bustion. In this particular case, the chemical reactions are known
to occupy a lower-dimensional manifold. The proposed AIM cor-
rectly identified this manifold, without being prescribed a priori.
The a priori study examines the suitability of the inertial manifold
theory in modeling turbulent flows. The proposed AIM is inves-
tigated for determining the dimension of the inertial manifold or
the attractor of the system and reconstructing the unresolved vari-
ables based on the information of the exact resolved field.37 Given
these prior results, the focus here is on a posteriori validation, where
the AIM approach is used to obtain the small-scale contribution to
the evolution of the large resolved scales and close the turbulence
modeling. As opposed to the a priori studies, this work examines
the accuracy of the modeled trajectory of the system in the approx-
imate inertial manifold. Moreover, a computationally efficient
approach is provided, and possible simplifications to accelerate the
model will be studied. The inertial manifold theory and the AIM
methodology have been explained in Sec. II, followed by results in
Sec. III. Finally, concluding remarks and future paths are discussed
in Sec. IV.

II. MATHEMATICAL FORMULATION OF AIM
In this section, a reduced-order description of dynamical sys-

tems based on the IM theory is discussed. Any fluid system governed
by a set of partial differential equations can be cast as a dynamical
system after spatial discretization such that the discrete vector of
variables of interest, e.g., momentum or energy in the case of non-
reacting flows, is given by the set v = {v1, v2, . . . , vnv}, and the
governing differential equations are written as
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dv
dt
+𝒜v +ℱ (v) = 0, v(t = 0) = v0, (1)

where 𝒜 is a discretized linear operator, which is taken to be pos-
itive and self-adjoint. Thus, the set of eigenvectors of 𝒜 forms
an orthonormal eigenbasis for the Hilbert space ℋ , in which the
dynamics reside. The nonlinear term, ℱ , induces a computational
challenge as it couples all scales of the solution.

The goal is to describe the dynamical features of the flow in a
lower-dimensional manifold described by the dynamics of a subset
of the variables of interest. An orthogonal projection operator P is
defined to decompose the vector of variables (v) into the resolved
u and unresolved w subsets. Applying the projection operator to
the discrete governing equations, the evolution equations for the
resolved and unresolved fields can be obtained as

du
dt
+𝒜 u + Pℱ (v) = 0, u(t = 0) = Pv0, (2)

dw
dt
+𝒜w +Qℱ (v) = 0, w(t = 0) = Qv0, (3)

where Q = I − P is the complement operator of P, and it maps its
operand to the null-space of the projection operator, P. Here, the
projection P is taken to be onto the space formed by the first m
eigenfunctions of the linear operator 𝒜 .

The main challenge in describing the large-scale dynamics only
by using the resolved scales is the projected nonlinear term Pℱ (v),
which cannot be computed directly from u. This is the typical clo-
sure challenge in turbulence modeling. The goal is to estimate w
using only information of u and compute the projected nonlinear
term. The approach here is to leverage the unresolved-scales gov-
erning equation by utilizing the IM approximation: the dynamics
of u directly determine the dynamics of w. In other words, the
components of w adjust to changes in u instantaneously. With the
approximation dw/dt = 0,39 Eq. (3) results in

w = −𝒜 −1Qℱ (u,w). (4)

The above nonlinear equation can be solved by an iterative method
to obtain a converged solution for w. With this approximation of
the unresolved dynamics, the nonlinear term Pℱ (u,w) and the
governing equations of the resolved modes u are closed.

Before any spatial discretization, the unresolved subspace is
infinite-dimensional. After spatial discretization, the unresolved
subspace is the subspace between approximated IM and the entire
state space. To develop a low-dimensional AIM, the unresolved sub-
space becomes considerably higher dimensional such that solving
Eq. (4) can be adversely expensive in terms of cost and memory.
This limitation can be lifted by considering only part of the unre-
solved dynamics that resides in a close neighborhood of the resolved
subspace. Such simplification is in agreement with the exponential
tracking property of dissipative dynamical systems,29 and the resul-
tant lower grid resolution reduces the cost of the approach. As
aforementioned, the projection operator is positive and self-adjoint,
with an ascending set of eigenvalues. Moving farther from the
AIM, the timescales of the unresolved dynamics become smaller. By
removing these exponentially decaying dynamics, the stiffness of the
problem reduces, and a larger time step can be used. In the a priori

analysis,37 this modeling ansatz has been evaluated for the KSE and
homogeneous isotropic turbulence (HIT). Direct numerical simula-
tions are used to validate the accuracy of the IM approximation and
study the convergence properties of the AIM approach. The purpose
of this a posteriori study is to assess the AIM closure as a reduced-
order model for the prediction of turbulent flows. Here, only the
resolved scales will be evolved, and at each time step, the small scales
will be reconstructed using the AIM approach.

III. AIM-BASED ROM FOR CANONICAL PROBLEMS
In this section, the system’s dynamics are tracked in a low-

dimensional AIM for the KSE and HIT. By tracking the dynamics
of the system in a lower-dimensional space, convergence of the AIM
model to the full-dimensional solution is shown for the KSE that
possesses an IM. A computationally efficient framework of AIM is
investigated for HIT because it is a more realistic problem of interest.
A correction model is proposed and assessed in the forecast of sta-
tistical properties, dynamics of spatial statistics, and energy transfer
between the resolved and unresolved subsets. Finally, the reduced-
order model performances are compared against other prevalent
turbulence models.

A. Kuramoto–Sivashinsky equation-based
spatiotemporal chaos

The KSE is known to have a low-dimensional IM and
has traditionally served as a surrogate problem for studying IM
properties.40,41 The evolution of the KSE in spectral space is
governed by

d
dt
vk + (μq4

k − q2
k)vk +

iqk

2

l=+∞
∑

l=−∞
vlvk−l = 0, (5)

where t is the time, qk = 2πk
L , k ∈ Z, L is the spatial period, and μ is

the viscosity.
Equation (5) can be arranged as Eq. (1) with the linear operator

𝒜 = μq4
k. The KSE has two linear operators, but only the diffu-

sion operator (μq4
k) satisfies properties required by the theory of

inertial manifolds (i.e., linear, unbounded, and self-adjoint). The
full-dimensional system can be solved by truncating the discretized
KSE at a sufficiently large wavenumber called nF . Here, the goal is to
predict the dynamics of the system by evolving only the first
m Fourier coefficients such that m≪ nF , while the nonlinear
contribution of the higher modes is modeled by the AIM approach.

After decomposition by projections P and Q, the dynamics of
the system are predicted by time evolution of the resolved variables
alone, u = (v−m/2, . . . , vm/2), and the unresolved variables (w) are
reconstructed by the AIM graph [Eq. (4)],

w
j
k = μ−1q−4

k

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

q2
kw

j−1
k − i

2
qk ∑

1 ≤ ∣l∣ ≤ nF/2,

1 ≤ ∣k − l∣ ≤ nF/2

(u,wj−1)l(u,wj−1)k−l

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

(6)
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to close the governing equation of the resolved variables [Eq. (2)].
Here, j denotes the iteration index in the approximation, and in the
following analysis, j = 1, unless otherwise mentioned. The accuracy
and convergence of Eq. (6) were assessed a priori in Ref. 37. The
focus here is to examine the accuracy of AIM-based ROM in the
prediction of the resolved dynamics.

1. Numerical results
The KSE exhibits spatiotemporal chaos, where infinitesimal

perturbations can lead to exponential energy accumulation. The
quadratic nonlinear term transfers energy from the low linearly
unstable modes to the high modes with rapid exponential decay.
Therefore, insufficient spatial resolution cannot capture energy
dissipation and leads to numerical instability. The chaotic dynamics
of the system are controlled by a bifurcation parameter defined as
Re = L

2π
√

ν . To identify a range of chaotic structures, the viscosity is
kept constant at μ = 0.001, and the length of the domain is varied
to have 158 ≤ Re ≤ 1000. As the range of scales increases with the
Re number, the number of Fourier modes needed to resolve the
dynamics also changes. At each Re number, there is a minimum
resolution required for the stability of the solution (Nmin), while a
considerably higher resolution is needed to capture the spatiotem-
poral chaos of the KSE NDNS.37 The objective of the proposed
reduced-order model is to evolve the dynamics of the system on an
AIM spanned by m≪ Nmin. When discussing the AIM dimension
(m in Sec. II), the minimum resolution will be used as a refer-
ence. The initial condition of the dynamical system in physical
space is chosen to be g(x) = sin(x) (1 + cos(x)) for the reference
DNS simulation, and for the AIM prediction, the projected initial
condition Pg(x) is used. For both full-dimensional and reduced-
order simulations, the exponential time difference fourth-order
Runge–Kutta method (ETDRK4)42,43 with standard 3/2 de-aliasing
is implemented.

Figure 1 (left) shows an example solution of the full-dimen-
sional system for the Reynolds number 316.23 using NDNS = 4096
Fourier modes. At t > 0.15, the dynamics enter the chaotic regime,
where a truncated system with 1024 Fourier modes for the same
Reynolds number becomes unstable and blows up. However, includ-
ing the AIM subgrid model in the evolution of the first 1024 Fourier

modes stabilizes the solution and predicts transition to turbulence
accurately (Fig. 1, right).

The accuracy of the model prediction depends on the size of
the AIM, m, and the accuracy of the approximation of the unre-
solved dynamics [Eq. (6)]. The KSE is known to have a relatively
low-dimensional inertial manifold that scales with Re.36,40 Here,
the model accuracy is assessed for a range of resolutions, m, and
Fig. 2 shows the root mean square of the error between the AIM
prediction and the full-dimensional system solution in physical
space computed in the chaotic regime (t > 0.15), over a range of
Re numbers and AIM dimensions. The AIM resolution is normal-
ized by the integer part of the Reynolds number (Re), which is
the number of linearly unstable modes. The AIM prediction con-
verges uniformly to the exact solution when the approximate IM is
large enough to contain all of the unstable dynamics. These results
suggest that strong convergence properties can be obtained for res-
olutions exceeding this point, which is in agreement with prior
works.36,40

In the AIM model, the ground assumption is that the unre-
solved variables respond instantly to the resolved dynamics, i.e.,
dw/dt = 0. The validity of this assumption and the rate of conver-
gence to the fixed-point solution of Eq. (6) have been assessed in
the a priori study.37 The optimum number of iterations depends
on the Re number and the resolution of AIM (m). Seeking the
fixed-point solution can be computationally expensive, and its fea-
sibility should be judged based on the improved accuracy of the
resolved dynamics prediction. Figure 3 (left) shows the energy spec-
trum of Fourier modes in the resolved and unresolved subspaces.
The modeled resolved spectrum generally follows the DNS spec-
trum, but there are discrepancies at the largest resolved scales. The
reconstructed unresolved spectrum can be improved by implement-
ing more iterations in Eq. (6). The first-order approximation ( j = 1)
considers only the nonlinear interaction between the resolved scales
for the transfer of energy to the unresolved scales. This approxi-
mation is improved by seeking the fixed-point solution of Eq. (6)
with more iterations to reconstruct the unresolved modes. However,
unlike the unresolved dynamics, this higher-order approximation
does not improve the resolved dynamics spectrum significantly. To
assess this higher-order approximation more precisely, the prob-
ability density function (PDF) of the predicted resolved modes is

FIG. 1. Solution of the KSE for Re
= 316.23. Left: DNS with NDNS = 4096
and right: AIM with m = 1024. Only part
of the computational domain is shown.
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FIG. 2. L2-norm of the spatiotemporal error of AIM prediction in physical space;
Re = 158.11: blue filled triangle, Re = 316.23: red filled square, Re = 569.21:
green filled inverted triangle, and Re = 1011.93: violet filled circle. Vertical dashed
line marks m = [Re].

compared for various closures obtained by different numbers of
iterations ( j) in Eq. (6). Figure 3 (right) compares the PDF of
the real part of the Fourier mode at the cut-off wavenumber for
Re = 158.11 and m = 256 predicted by AIM and DNS. It is shown
that a higher-order approximation of the unresolved dynamics gives
a better prediction of the resolved scales throughout the distribution.
More details on the convergence properties of Eq. (6) are discussed
in Ref. 37.

B. Homogeneous isotropic turbulence
In this section, the evolution of a turbulent flow in a domain

of 2π × 2π × 2π m with periodic boundary conditions is modeled
by AIM. The flow field is governed by the three-dimensional
incompressible Navier–Stokes equations

∂ξi

∂t
+ ξj

∂ξi

∂xj
= −1

ρ
∂p
∂ξi
+ μ

∂

∂xj
( ∂ξi

∂xj
) + Bξi,

∂ξi

∂xi
= 0,

(7)

where ξi is the velocity component in the ith direction, p is the
hydrodynamic pressure, μ is the kinematic viscosity, and ρ is the
density. Large-scale motions are forced by a constant linear forc-
ing coefficient B to compensate for the viscous dissipation and reach
statistical stationarity.44,45 By expanding the solution of Eq. (7) in
Fourier space: ξi = ∑k⃗vi(k⃗, t)ek⃗ .x⃗ , a Galerkin projection of the gov-
erning equations leads to a system of ODEs that govern the evolution
of the Fourier coefficients vi(k⃗, t),

d
dt
vi(k⃗, t) + μ∣k∣2vi(k⃗, t) − B(k⃗)vi(k⃗, t) + k⃗

f⃗ .k⃗
∣k∣2 − fi = 0,

fi = −(
∂̂ξiξj

∂xj
)

k⃗
.

(8)

Equation (8) can be rearranged as Eq. (1) using the linear operator
𝒜 = μ∣k∣2, with ℱ (v) containing all other terms. A sharp spec-
tral projection operator with a cut-off wavenumber kc separates the
resolved and unresolved subspaces such that all the modes with
wavenumbers

√
k2

x + k2
y + k2

z ≤ kc are included in the resolved space.
The number of modes satisfying this requirement is the dimension
of AIM, m. With the IM assumption, the unresolved variables with
wavenumber ∣k⃗∣ > kc can be approximated as

w
j
k⃗
= −(μ∣k∣2)−1Qℱ (u,wj−1)k⃗, (9)

where u is the vector of the resolved variables. It can be shown that
the velocity field reconstructed by the AIM satisfies continuity.37

With this approximation of the unresolved dynamics, the nonlinear
term (Pℱ (u,w)) can be computed directly. Hence, the governing

FIG. 3. Left: Energy spectrum (E(k) = ∣vk ∣2) of the KSE at Re = 316.23; DNS: blue solid line, AIM with m = 512 and j = 1 in Eq. (6): red dashed-dotted line, and AIM
with m = 512 and j = 4 in Eq. (6): green solid line. Right: PDF of real part of um/2 predicted by AIM and DNS at Re = 158.11, m = 256; DNS: blue solid line, AIM with j = 1
in Eq. (6): red dashed-dotted line, and AIM with j = 3 in Eq. (6): green dashed line.
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equation of the resolved dynamics [Eq. (2)] is closed, and the
resolved space dynamics can be evolved in time independently.

Unlike the KSE, the rate of convergence in Eq. (9) is slower
than quadratic,37 and more iterations are needed to approximate
higher modes in the unresolved subspace, which can make the AIM
approach inefficient. Removing the smallest unresolved scales from
the computational grid makes the AIM approach more efficient in
two ways: (1) by reducing the size of the domain, the cost of com-
puting the nonlinear term ℱ (u,w) decreases and (2) small-scales
require higher-order approximation of Eq. (9), and by removing
them, fewer iterations are needed to approximate all unresolved
modes. Therefore, the unresolved subspace can be decomposed into
the unresolved but represented scales approximated by Eq. (9) and
the unresolved and unrepresented scales with wavenumbers larger
than the Nyquist wavenumber (kng ) of the computational grid. The
decomposition of the computational domain is shown in Fig. 4.
The AIM dimension refers to m, which determines the degrees of
freedom of the resolved subspace, and AIM resolution is the ng
of an AIM simulation that includes both the resolved and rep-
resented unresolved subspaces. The effect of the unresolved and
unrepresented scales on the dynamics of the system needs to be
modeled.

1. A modified approximate inertial manifold
The a priori analysis has demonstrated that approximating only

the larger unresolved scales reconstructs the interaction between

FIG. 4. Representation of the resolved and unresolved subspaces in the wavenum-
ber space. A circle with a radius km encloses the resolved modes. The light gray
shaded area denotes the unresolved and unrepresented modes, and the dark
gray area represents the unresolved but represented modes. kmax is the highest
wavenumber in DNS calculations, and kN is the highest wavenumber in AIM-
ROM calculations. The dashed red rectangle denotes the computational domain
of AIM-ROM.

the resolved and unresolved dynamics with sufficient accuracy.
However, it cannot provide adequate dissipation in the system.37

This behavior is similar to other approaches, which reconstruct the
unresolved dynamics.10,17 Here, a dissipative modeling component
similar to the eddy-viscosity approach is added to address this short-
coming. Most eddy-viscosity subfilter models in LES assume that the
SGS contribution to the filtered field is dissipative and thus cannot
predict the transfer of energy to the large scales (backscatter). An
improvement has been made by adding additional non-dissipative
terms to these models, such as the mixed model and the scale-
similarity model.1,17 Dynamic subfilter modeling can also account
for backscatter in transitional flows if locally negative eddy-viscosity
is allowed.13 On the contrary, AIM recovers the nonlinear interac-
tion between the resolved and unresolved scales by reconstructing
the subfilter field without assuming a forward cascade of energy.
The recovered unresolved energy spectrum can be used to deter-
mine the rate of backward/forward transfer of energy between the
resolved and unresolved subsets. The energy stored in the unre-
solved scales either transfers backward to the resolved scales or
transfers forward to the smaller unresolved scales where it finally
gets dissipated by molecular viscosity. If only a subset of the unre-
solved space is reconstructed by the AIM approach, the energy of
the unrepresented scales should be drained from the system. The
energy of unrepresented scales can be approximated by the forward
scatter of energy of the reconstructed scales as this energy will even-
tually transfer to smaller unrepresented scales. Therefore, energy
virtually transferred to the unresolved and unrepresented scales is
dissipated. First, the AIM approximation is studied to determine
whether backward/forward energy transfer is captured accurately.
The subgrid-scale dissipation, εSGS, is defined as

εSGS = τijSij, (10)

where τij = P(vivj) − uiuj is the SGS stress, and Sij = (∂ui
∂xj
+ ∂uj

∂xi
) is

the resolved-scales strain rate. When the unresolved scales remove
energy from the resolved ones (forward scatter), εSGS is negative; and
if SGS transfers energy to the resolved scales (backscatter), SGS dissi-
pation is positive. Therefore, forward and backward energy transfer
can be defined as46

ε− = 0.5(εSGS − ∣εSGS∣),
ε+ = 0.5(εSGS + ∣εSGS∣).

(11)

The energy from the forward scatter will eventually dissi-
pate at the smallest scales. If the smallest unresolved scales are
discarded, this energy needs to be removed to avoid energy accu-
mulation beyond the cut-off wavenumber. The energy spectrum
reconstructed by AIM can provide the rate of energy dissipation at
the unresolved scales. A dynamic spatially varying viscosity can be
determined to dissipate the forward cascade of energy beyond the
cut-off wavenumber,

− ∣ε̂−∣ = 2μT(k)∣k∣2E(k), (12)

where ε̂− is the Fourier transfer of the forward cascade of energy,
and E(k) is the energy spectrum that represents the contribution to
the turbulent kinetic energy 1

2 ⟨vivi⟩ from all modes with ∣k⃗∣ in the
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ALGORITHM 1. Algorithm of the modified AIM-based reduced-order model.

1: At t = tn:
2: μT(k⃗) = 0
3: w0 = 0
4: for j = 1 : l do
5: μeff = μ + μT

6: w
j
k⃗
= −(μeff ∣k∣2)−1Qℱ (u,wj−1)k⃗

7: Compute E(k)
8: Compute ε− by Eq. (11)
9: Compute μT(k) by Eq. (12)
10: end for
11: Compute Pℱ (un,wn)
12: Advance resolved scales by Eq. (2) to t = tn+1

range k ≤ ∣k⃗∣ < k + dk. Here, the energy spectrum is computed for
the resolved and reconstructed unresolved modes. With this turbu-
lent viscosity, the effective viscosity at the unresolved scales is μeff (k⃗)
= μ + μT(k⃗), and the unresolved dynamics are approximated by

w
j+1
k⃗
= −(μj

eff ∣k∣
2)−1Qℱ (u,wj)k⃗. (13)

It should be noted that μeff changes at each iteration. For j = 1,
μeff = μ because the unresolved subspace is not reconstructed yet.
Algorithm 1 summarizes the modified AIM-ROM approach that
advances from time step t = tn to tn+1. By implementing more itera-
tions (increasing l in Algorithm 1), the modified viscosity is updated
with the reconstructed unresolved scales. Backward and forward
scattering of energy occurs at all scales, and turbulent viscosity
obtained from Eq. (12) can be defined at both the resolved and
unresolved scales. Three different approaches have been considered:
(1) modifying viscosity only at the resolved subspace similar to the
optimal LES model,47 (2) modifying viscosity at both the resolved
and unresolved subspaces, and (3) modifying viscosity only at the
unresolved subspace. Here, the effective viscosity is modified only
at the represented unresolved scales as the forward energy transfer
from the resolved scales will eventually dissipate at the represented
unresolved scales. Hence, modifying the effective viscosity at the
resolved scales based on ε− introduces too much dissipation in the
system. It should be mentioned that while modifying the effective
viscosity at the unresolved scales changes the linear operator upon
which separation of scales is based, it is aligned with the inertial
manifold theory requirements as it increases the spectral gap of
the linear operator of the Navier–Stokes equations. As unresolved
scales become more dissipative, the separation of scales between
the resolved and unresolved scales is more prominent. In turn, the
assumption that unresolved scales equilibrate to the AIM dynamics
is more justified.

2. Numerical results
Direct numerical simulations of HIT at two spatial resolutions

are used to investigate the accuracy of the AIM prediction. For
DNS and AIM-ROM simulations, a pseudo-spectral method with
dealiasing is used for the non-linear term. Exact time integration
is used for the linear viscous term, and second-order Runge–Kutta

TABLE I. Numerical setup for HIT.

Grid resolution (N g) μ Reλ η/Δx B kf DKY

2563 0.05 91.54 0.55 5 8 6.9257 × 104

5123 0.01 290.27 0.23 8 8 6.4165 × 106

(RK2) is used for the other terms. Table I presents the numeri-
cal setup for DNS cases. The Taylor microscale Reynolds number
Reλ and the Kolmogorov length scale η (Δx is grid spacing in each
direction) are monitored over the initialization time to make sure
the turbulent field is fully developed and resolved. The forcing of
the velocity field has been limited to the large energy-containing
scales [B(k⃗) = 0, for k⃗ > kf ], and the flow statistics are monitored
for several eddy turnover times (τ) to ensure that the forcing
method does not lead to instability and energy pile-up at small
scales.

Current theories cannot prove the existence of an inertial
manifold for the Navier–Stokes equations.24 However, in systems
dominated by coherent structures, the dynamics of the system
are confined to a low-dimensional attractor.48–50 For instance, the
attractor dimension is lower than the number of degrees of freedom
required by DNS for turbulent flows.27,51 More specifically, in forced

HIT, it is shown that the attractor dimension scales with ( L
η)

2.8
,27

where L is the domain length. For the turbulent fields considered
here, this estimated attractor dimension (DKY) is used as a reference
for the assessment of AIM accuracy over a range of AIM dimen-
sions. It should be mentioned that when an inertial manifold exists,
it contains the attractor of the system. Hence, the AIM should be
larger than the attractor of the system regardless of the existence of
an inertial manifold.

FIG. 5. Spectrum of the backward (blue solid line) and forward (black solid line)
SGS dissipation rate for ng = 2563 and kc = 16. DNS: solid lines and AIM: dashed
lines.
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FIG. 6. Top: subgrid-scale dissipation normalized by the total resolved dissipa-
tion, middle: SGS backscatter normalized by the total resolved dissipation, and
bottom: fraction of points with backscatter of the energy in the computational
domain. DNS of 2563: blue solid line with circle, AIM modeling for 2563 DNS case:
red dotted line with circle. DNS of 5123: green solid line with square, and AIM
modeling for 5123 DNS case: purple dotted line with square. The horizontal axis
is the resolved subspace dimension normalized by the full-dimensional system
dimension (m/ng).

To evaluate the proposed AIM model against common tur-
bulence modeling approaches in terms of accuracy and efficiency,
large-eddy simulations with the dynamic Smagorinsky subfilter
model11 have been conducted. For the sake of comparison, the sharp
spectral filter is used for the LES to make the resolved subspace of
AIM and LES almost identical. However, the resulting variable sep-
arations are not identical as the resolved subspace of AIM in the
wavenumber space is a sphere with radius kc, while the same cut-off
wavenumber in LES resolves all the wavenumbers enclosed in a cube
of side length 2kc. Following the conventional LES practices, the

subfilter field representation is implicit such that the subfilter scales
are not represented on the computational grid, and their contribu-
tion is modeled by the dynamic eddy viscosity. On the other hand,
AIM reconstructs the subfilter field either entirely or just a subspace
of it. Therefore, for the same cut-off wavenumber, the computational
grid is larger in AIM compared to the LES.

First, the AIM approximation [Eq. (9)] has been examined to
see if the reconstructed turbulent field captures the forward and
backward scatter of energy between the resolved and unresolved
scales accurately. Figure 5 shows the rate of energy transfer over the
range of scales for the 2563 field with kc = 16. As expected, subgrid-
scale energy transfer is dominated closer to the cut-off wavenumber
and at larger unresolved scales. This behavior confirms that there
is no need to recover all of the unresolved subspace, and approx-
imating only the largest unresolved scales is sufficient to capture
subgrid-scale effects on the resolved dynamics. It can be seen that
AIM captures energy transfer in both directions. However, it over-
estimates the backward scatter at the unresolved scales. This may
be due to the limited approximation of the unresolved scales, and
by implementing more iterations in Eq. (9) and recovering smaller
unresolved scales, this approximation can improve.37

Statistics describing the energy transfer between the resolved
and unresolved subspaces are provided in Fig. 6, where the (SGS)
dissipation (top) and energy backscatter of the subfilter field (mid-
dle) as a function of the normalized AIM dimension (m/ng) are
shown. Here, the SGS dissipation and backscatter of energy to the
resolved scales are computed from turbulence fields modeled by the
AIM over a range of resolutions (m). Also, DNS fields are filtered,
and the exact values of these quantities are computed at different
filtering widths for comparison with AIM. At each cut-off wavenum-
ber, the SGS dissipation (⟨εSGS⟩) and the energy backscatter (⟨ε+⟩)
are normalized by the total resolved dissipation (⟨ε⟩). It can be seen
that by increasing the filter width, i.e., by using a lower AIM res-
olution, the amount of SGS dissipation increases. Accordingly, the
amount of backscatter of energy to the resolved scales increases,
because the cut-off wavenumber is farther away from the rapidly
dissipative scales, and a larger part of the inertial range is in the
unresolved subspace. The number of points in the physical domain

FIG. 7. Time evolution of the resolved turbulent kinetic energy (left) and the dissipation rate (right) of the 2563 field with kc = 16. DNS: black solid line, AIM: red dashed line,
modified AIM: green dashed-dotted line, and LES: violet dotted line.
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FIG. 8. Time evolution of the resolved turbulent kinetic energy (left) and the total dissipation rate (right) of the 2563 field with kc = 16. DNS: black solid line, modified AIM
with Ng = 2563: green dashed-dotted line, modified AIM with Ng = 1283: red dashed-dotted line, modified AIM with Ng = 643: blue dashed-dotted line, and LES: violet
dotted line.

experiencing energy backscatter is almost independent of the cut-
off wavenumber (Fig. 6, bottom), which shows that even when
the amount of energy backscatter is not considerable compared to
the total dissipation, subgrid energy backscatter occurs between the
smallest scales at the dissipation range. AIM predicts the same char-
acteristics but more locations in the domain experience backscatter.
This is not surprising as the AIM approach [Eq. (9)] models nonlin-
ear interaction between the scales but does not have a completely
dissipative component. Overall, these results show that AIM can
capture energy transfer between the resolved and unresolved sub-
spaces accurately, and this property can be used to implement a
dynamic dissipative component to account for the unresolved and
unrepresented scales [Eq. (13)].

Turbulent statistics predicted by original and modified AIM
models are compared against the DNS calculation in Fig. 7, where

turbulent kinetic energy is computed based on the resolved field
and the total dissipation rate is computed based on the effective
viscosity in each of the modeling approaches including LES. It can
be observed that the original AIM approximation alone cannot
predict enough dissipation in the system, but adding a dissipative
component solves this problem, and dissipation is almost accu-
rately predicted by the modified AIM model. This improvement in
AIM prediction is not dominant in the resolved turbulent kinetic
energy as the modified viscosity removes energy only from the unre-
solved scales. These statistics show that AIM models outperform
the dynamic Smagorinsky approach. However, it should be noted
that here all of the unresolved subspace is approximated by AIM
[Eqs. (9) and (13)]. Decomposing the unresolved subspace into rep-
resented and unrepresented subsets provides a closer comparison
to LES.

FIG. 9. Time evolution of the resolved turbulent kinetic energy (left) and the total dissipation rate (right) of 5123 field with kc = 64 (blue lines) and kc = 128 (black lines). The
solid lines are obtained from DNS, and the dashed lines are predicted by a modified AIM model. Since the total dissipation does not depend on kc , only one line is shown
here for the dissipation evolution of the DNS field (right).
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FIG. 10. Left: the resolved kinetic energy spectrum of a forced 5123 field for kc = 64, DNS: black solid line, AIM: red dashed-dotted line, modified AIM: green dashed-dotted
line, and LES: violet dotted line. Right: the resolved kinetic energy spectrum of the decaying 5123 field for kc = 64, DNS: black solid line, modified AIM: red dashed-dotted
line, and LES: violet dotted line.

To assess the modified AIM approach in modeling the effect
of the unresolved and unrepresented scales, only a part of the
unresolved subspace is kept in the computational domain and
approximated by AIM [Eq. (13)]. Figure 8 shows the statistical prop-
erties for the 2563 field and kc = 16, where the unresolved subspace
dimension in AIM is reduced by discarding higher wavenum-
bers and using a lower grid resolution. For the full-dimensional
system of this case, the highest wavenumber in the computations
is 120.7, and the full-dimensional unresolved subspace contains all
modes with 16 < ∣k⃗∣ < 120.7. By reducing the AIM resolution to
N g = 643 and N g = 1283, the highest unresolved modes considered
are roughly 30 and 60, respectively. While reducing the unresolved
subspace dimension does not affect the turbulent kinetic energy
of the resolved subspace substantially, it underestimated total dis-
sipation in the system considerably. In the lowest-resolution AIM
for kc = 16, the largest unresolved wavenumber reconstructed by

AIM is 30.2, which gives ∣k⃗∣/kc < 2. Figure 5 shows that a consid-
erable amount of forwarding cascade of energy is discarded at this
AIM resolution. In this case, the dimension of AIM, m, is only
0.75 of the estimated dimension of the system’s attractor (DKY in
Table I). By increasing the AIM dimension, the approximation of
the unresolved dynamics and AIM prediction improve considerably.
Considering approximate inertial manifolds for the 5123 case with
two different dimensions obtained from kc = 64 and kc = 128 results
in m/DKY ≈ 0.5 and m/DKY ≈ 4. Figure 9 compares the time evo-
lution of turbulent kinetic energy and dissipation rate predicted by
AIM against the DNS data. By increasing the AIM dimension, both
approximations have improved especially earlier in the prediction
time.

The resolved energy spectrum of the 5123 field predicted by the
DNS, AIM, and LES models for projection wavenumber kc = 64 is
compared in Fig. 10 (left). At this resolution, the AIM dimension,

FIG. 11. Magnitude of the velocity vector in a plane of the computational domain for the decaying 5123 field, left: DNS, middle: modified AIM with kc = 64 and m/DKY ≈ 0.5,
and right: LES with Ng = 1283. The LES field is interpolated into a higher resolution for demonstration purposes.
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m, is almost half of the estimated dimension of the system’s attrac-
tor (DKY in Table I). The energy spectrum predicted by AIM models
is more accurate than the dynamic Smagorinsky model. The orig-
inal AIM model overestimates the energy of the smallest resolved
scales. This issue has been alleviated in the modified AIM model.
The spectrum predicted by the dynamic Smagorinsky model is quite
different from the exact spectrum, which can be due to the lim-
ited forcing of the large scales. The dynamic Smagorinsky approach
relies on the scale-similarity between larger resolved scales, smaller
resolved scales, and unresolved scales. Limited forcing at the larger
resolved scales can falsely impose a higher rate of energy trans-
fer at the smaller scales and lead to overshooting of energy at the
smallest resolved scales. To test this explanation, the same initial
condition for the 5123 field in Table I is used for decaying HIT
where there is no force. Figure 10 (right) shows the energy spec-
trum predicted by the DNS, modified AIM, and LES at t/τ ≈ 1, and
it can be seen that the LES spectrum follows the exact spectrum even
though it is more dissipative at the smallest resolved scales. This
behavior of the LES and AIM models is consistent over the range
of cut-off wavenumbers considered. However, the prediction of the
dynamic Smagorinsky model improves when the cut-off wavenum-
ber is high enough to be in the dissipation range of the energy
spectrum.

Finally, the contours of the velocity field predicted by the DNS,
modified AIM, and LES models are compared in Fig. 11. Here,
the decaying case of the 5123 field has been chosen for compar-
ison. The decaying turbulent field allows for a fixed time step
for all simulations. Velocity fields are compared at t/τ0 ≈ 1. Both
modeled fields look quite similar to the DNS field, but it can be
seen that AIM preserves more details of the smaller structures. It
should be mentioned that in decaying HIT, as turbulent energy
dissipates, the size of the attractor changes and shrinks. Hence, the
approximation of AIM becomes more accurate for longer prediction
times.

FIG. 12. Reduced computational cost of DNS for Ng = 2563 with AIM: blue
filled circle, dynamic Smagorinsky: blue filled up-pointing triangle, and constant
Smagorinsky: blue filled square models. Reduced cost of DNS for Ng = 5123 with
AIM: red filled circle, dynamic Smagorinsky: red filled up-pointing triangle, and
constant Smagorinsky: red filled square models.

The computational cost of the AIM and LES models are com-
pared over a range of cut-off wavenumbers in Fig. 12, where compu-
tational costs of the AIM and LES models are normalized by the cost
of the corresponding DNS. The comparison is based on the reduced
grid resolution of the models (N/N g), where N is the grid resolu-
tion of AIM or LES simulations, and N g is the grid resolution of
the corresponding DNS. It is shown that AIM is more expensive
than the constant Smagorinsky model, but it is more efficient com-
pared to the dynamic LES modeling. It should be mentioned that
for the same grid resolution of AIM and LES, the resolved space
in AIM is lower-dimensional than in LES, and it is not possible
to compare the computational cost of these models with the same
accuracy.

IV. CONCLUSIONS
A reduced-order model of turbulent flows has been devel-

oped based on the inertial manifold (IM) theory. Casting the dis-
cretized governing equations as a dynamical system provides a
path for the decomposition of variables without relying on tra-
ditional scale-separation methods, such as spatial filtering. Here,
governing equations of the system have been leveraged to define
resolved variables and recover unresolved variables to directly com-
pute the nonlinear term. The proposed model has been exam-
ined on two canonical flows: the one-dimensional KSE and the
three-dimensional HIT.

The existence of an inertial manifold is not yet proven for
turbulent flows. Nevertheless, the construction of an AIM for the
Navier–Stokes equations shows promising results. The AIM-based
reduction requires that the dimension of the reduced-order model
should be higher than the dimension of the attractor. Since exactly
obtaining the attractor dimension is not feasible for most practical
problems, the proposed AIM is examined over a range of dimen-
sions to understand the validity of this approximation. Convergence
properties of the AIM conform with direct estimations of the size
of the attractor for these systems, proving that the proposed AIM
can approximate the dynamics of the attractor. Studying the attrac-
tor of chaotic systems provides new paths for the development
of reduced-order models to predict and control complex systems.
Direct methods for finding the topology of the attractor are pro-
hibitively expensive, but strong convergence properties observed for
approximate inertial manifolds over a range of problems consid-
ered in this study show the potential of this approach in locating
the attractor of more practical systems. The next steps will involve
extensions to non-homogeneous systems such as wall-bounded
flows, for which the AIM approach should be cast in physical
space.52

For a given resolved field, AIM reconstructs a single realiza-
tion of the unresolved dynamics. This contribution of an AIM to
the resolved dynamics can also be seen as a subgrid-scale model.
In all configurations, for a sufficiently large dimension of the AIM,
the unresolved dynamics were found to respond to the dynamics of
the AIM instantaneously. However, smaller scales in the unresolved
dynamics are less responsive to the dynamics of the IM, and there is a
time delay in their response. A higher-order estimation of the unre-
solved dynamics, where the interactions between the resolved and
unresolved dynamics are included, improves the AIM estimation
of the unresolved dynamics. The rate of convergence is controlled
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by the nonlinear interaction between the resolved and unresolved
scales. However, turbulence is broadband, and the approximation
of the unresolved dynamics farther from the approximate inertial
manifold can be cost-prohibitive. It is shown that reconstruction of
the entire unresolved subspace is not necessary, and recovering the
unresolved dynamics in the vicinity of the AIM captures the non-
linear interaction sufficiently. The information recovered by AIM
is used to model the effect of the dynamics far from the AIM. The
modified AIM approach is robust, efficient, and more accurate in the
prediction of statistical properties of the system. The modified model
shows the capacity of the AIM approach for an adaptive modeling
framework.
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